Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 38(9): 1969-1985, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30354262

RESUMO

Cardiovascular disease is a leading cause of death worldwide and accounts for >17.3 million deaths per year, with an estimated increase in incidence to 23.6 million by 2030. 1 Cardiovascular death represents 31% of all global deaths 2 -with stroke, heart attack, and ruptured aneurysms predominantly contributing to these high mortality rates. A key risk factor for cardiovascular disease is hypertension. Although treatment or reduction in hypertension can prevent the onset of cardiovascular events, existing therapies are only partially effective. A key pathological hallmark of hypertension is increased peripheral vascular resistance because of structural and functional changes in large (conductive) and small (resistance) arteries. In this review, we discuss the clinical implications of vascular remodeling, compare the differences between vascular smooth muscle cell remodeling in conductive and resistance arteries, discuss the genetic factors associated with vascular smooth muscle cell function in hypertensive patients, and provide a prospective assessment of current and future research and pharmacological targets for the treatment of hypertension.


Assuntos
Artérias/fisiopatologia , Hipertensão/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Remodelação Vascular , Animais , Anti-Hipertensivos/uso terapêutico , Artérias/patologia , Doenças Cardiovasculares/fisiopatologia , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/patologia , Inflamação/patologia , Inflamação/fisiopatologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Fatores de Risco , Transdução de Sinais , Transmissão Sináptica/fisiologia , Resistência Vascular
2.
Front Physiol ; 9: 332, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867516

RESUMO

The main function of red blood cells (RBCs) is the transport of respiratory gases along the vascular tree. To fulfill their task, RBCs are able to elastically deform in response to mechanical forces and, pass through the narrow vessels of the microcirculation. Decreased RBC deformability was observed in pathological conditions linked to increased oxidative stress or decreased nitric oxide (NO) bioavailability, like hypertension. Treatments with oxidants and with NO were shown to affect RBC deformability ex vivo, but the mechanisms underpinning these effects are unknown. In this study we investigate whether changes in intracellular redox status/oxidative stress or nitrosation reactions induced by reactive oxygen species (ROS) or NO may affect RBC deformability. In a case-control study comparing RBCs from healthy and hypertensive participants, we found that RBC deformability was decreased, and levels of ROS were increased in RBCs from hypertensive patients as compared to RBCs from aged-matched healthy controls, while NO levels in RBCs were not significantly different. To study the effects of oxidants on RBC redox state and deformability, RBCs from healthy volunteers were treated with increasing concentrations of tert-butylhydroperoxide (t-BuOOH). We found that high concentrations of t-BuOOH (≥ 1 mM) significantly decreased the GSH/GSSG ratio in RBCs, decreased RBC deformability and increased blood bulk viscosity. Moreover, RBCs from Nrf2 knockout (KO) mice, a strain genetically deficient in a number of antioxidant/reducing enzymes, were more susceptible to t-BuOOH-induced impairment in RBC deformability as compared to wild type (WT) mice. To study the role of NO in RBC deformability we treated RBC suspensions from human volunteers with NO donors and nitrosothiols and analyzed deformability of RBCs from mice lacking the endothelial NO synthase (eNOS). We found that NO donors induced S-nitrosation of the cytoskeletal protein spectrin, but did not affect human RBC deformability or blood bulk viscosity; moreover, under unstressed conditions RBCs from eNOS KO mice showed fully preserved RBC deformability as compared to WT mice. Pre-treatment of human RBCs with nitrosothiols rescued t-BuOOH-mediated loss of RBC deformability. Taken together, these findings suggest that NO does not affect RBC deformability per se, but preserves RBC deformability in conditions of oxidative stress.

3.
Am J Physiol Cell Physiol ; 313(6): C593-C603, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855161

RESUMO

Red blood cell (RBC)-derived adenosine triphosphate (ATP) has been proposed as an integral component in the regulation of oxygen supply to skeletal muscle. In ex vivo settings RBCs have been shown to release ATP in response to a number of stimuli, including stimulation of adrenergic receptors. Further evidence suggested that ATP release from RBCs was dependent on activation of adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP)-dependent pathways and involved the pannexin 1 (Panx1) channel. Here we show that RBCs express Panx1 and confirm its absence in Panx1 knockout (-/-) RBCs. However, Panx1-/- mice lack any decrease in exercise performance, challenging the assumptions that Panx1 plays an essential role in increased blood perfusion to exercising skeletal muscle and therefore in ATP release from RBCs. We therefore tested the role of Panx1 in ATP release from RBCs ex vivo in RBC suspensions. We found that stimulation with hypotonic potassium gluconate buffer resulted in a significant increase in ATP in the supernatant, but this was highly correlated with RBC lysis. Next, we treated RBCs with a stable cAMP analog, which did not induce ATP release from wild-type or Panx1-/- mice. Similarly, multiple pharmacological treatments activating AC in RBCs increased intracellular cAMP levels (as measured via mass spectrometry) but did not induce ATP release. The data presented here question the importance of Panx1 for exercise performance and dispute the general assumption that ATP release from RBCs via Panx1 is regulated via cAMP.


Assuntos
Trifosfato de Adenosina/sangue , Conexinas/sangue , AMP Cíclico/sangue , Metabolismo Energético , Eritrócitos/metabolismo , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/sangue , Sistemas do Segundo Mensageiro , 1-Metil-3-Isobutilxantina/farmacologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/sangue , Adulto , Animais , Colforsina/farmacologia , Conexinas/deficiência , Conexinas/genética , Metabolismo Energético/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Tolerância ao Exercício , Feminino , Genótipo , Gluconatos/farmacologia , Hemólise , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fenótipo , Fatores de Tempo , Adulto Jovem
4.
Antioxid Redox Signal ; 26(16): 917-935, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927026

RESUMO

SIGNIFICANCE: In this review, we discuss the role of nitric oxide (NO) as a key physiological mechanotransducer modulating both local and systemic heterocellular communication and contributing to the integrated (patho)physiology of the cardiovascular system. A deeper understanding of mechanotransduction-mediated local and systemic nodes controlling heterocellular communication between the endothelium, blood cells, and other cell types (e.g., cardiomyocytes) may suggest novel therapeutic strategies for endothelial dysfunction and cardiovascular disease. Recent Advances: Mechanical forces acting on mechanoreceptors on endothelial cells activate the endothelial NO synthase (eNOS) to produce NO. NO participates in (i) abluminal heterocellular communication, inducing vasorelaxation, and thereby regulating vascular tone and blood pressure; (ii) luminal heterocellular communication, inhibiting platelet aggregation, and controlling hemostasis; and (iii) systemic heterocellular communication, contributing to adaptive physiological processes in response to exercise and remote ischemic preconditioning. Interestingly, shear-induced eNOS-dependent activation of vascular heterocellular communication constitutes the molecular basis of all methods applied in the clinical routine for evaluation of endothelial function. Critical Issues and Future Directions: The integrated physiology of heterocellular communication is still not fully understood. Dedicated experimental models are needed to analyze messengers and mechanisms underpinning heterocellular communication in response to physical forces in the cardiovascular system (and elsewhere). Antioxid. Redox Signal. 26, 917-935.


Assuntos
Células Endoteliais/citologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Animais , Comunicação Celular , Células Endoteliais/enzimologia , Humanos , Mecanotransdução Celular , Estresse Mecânico
5.
Antioxid Redox Signal ; 26(13): 718-742, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889956

RESUMO

SIGNIFICANCE: Recent clinical evidence identified anemia to be correlated with severe complications of cardiovascular disease (CVD) such as bleeding, thromboembolic events, stroke, hypertension, arrhythmias, and inflammation, particularly in elderly patients. The underlying mechanisms of these complications are largely unidentified. Recent Advances: Previously, red blood cells (RBCs) were considered exclusively as transporters of oxygen and nutrients to the tissues. More recent experimental evidence indicates that RBCs are important interorgan communication systems with additional functions, including participation in control of systemic nitric oxide metabolism, redox regulation, blood rheology, and viscosity. In this article, we aim to revise and discuss the potential impact of these noncanonical functions of RBCs and their dysfunction in the cardiovascular system and in anemia. CRITICAL ISSUES: The mechanistic links between changes of RBC functional properties and cardiovascular complications related to anemia have not been untangled so far. FUTURE DIRECTIONS: To allow a better understanding of the complications associated with anemia in CVD, basic and translational science studies should be focused on identifying the role of noncanonical functions of RBCs in the cardiovascular system and on defining intrinsic and/or systemic dysfunction of RBCs in anemia and its relationship to CVD both in animal models and clinical settings. Antioxid. Redox Signal. 26, 718-742.


Assuntos
Anemia/metabolismo , Eritrócitos/metabolismo , Óxido Nítrico/metabolismo , Animais , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...